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Abstract. Recognition of traffic signs is a well re-
searched field in the computer vision community,
with several commercial applications already avail-
able. However, a vast majority of existing ap-
proaches focuses on recognition of a relatively small
number of traffic sign categories (about 50 or less).
In this paper, we adopt a convolutional neural net-
work (CNN) approach, i.e., the Faster R-CNN, to ad-
dress the full pipeline of detection and recognition of
more than 100 traffic sign categories, depicted in our
novel dataset that was acquired on Slovenian roads.
We report promising results on highly challenging
traffic sign categories that have not yet been consid-
ered in previous works and we provide useful insights
for CNN training.

1. Introduction

The problems of traffic sign detection (TSD) and
traffic sign recognition (TSR) have lately received
a considerable attention from the computer-vision
community, e.g., [17, 9, 41]. The purpose of TSD
is to find the locations and sizes of traffic signs in
natural scene images. The purpose of TSR is to clas-
sify the detected traffic signs into their specific cat-
egories. Several approaches focus solely on solving
the former problem [11, 17, 21], and many focus on
the latter [29, 9, 2], while some works, like our ap-
proach, attempt to solve both problems in a unified
framework [5, 41, 7].

Recognition of traffic signs is the key component
in driver-assistance systems [31] and autonomous ve-
hicles [19], with many solutions already being de-
ployed in real-world applications [1, 30]. However,
a vast majority of existing approaches focuses on de-
tection and recognition of a relatively small number
of traffic sign categories (about 50 or even less), as
the remaining categories are not highly important in

automotive safety applications. On the other hand,
verification of presence or absence of a larger num-
ber of traffic sign categories is crucial in road main-
tenance services [25, 4]. Our work is focused on the
detection and recognition of all traffic signs, which
would help eliminate the tedious manual verification
in such tasks, and could also be useful in applications
of autonomous vehicles; for example, to augment the
navigation when GPS signal is poor or when the traf-
fic signalization changes.

In this paper, we adopt a convolutional neural net-
work (CNN) approach to address both stages of the
recognition pipeline (TSD and TSR). We are tackling
the problems of detection and recognition of more
than 100 categories of traffic signs (Figure 1) on our
novel challenging dataset, acquired on the roads of

Figure 1. The 123 traffic sign categories considered in our
work. Top: 91 categories of the base set. Bottom: ad-
ditional categories of the extended set. Note that for a
certain information sign category individual instances can
contain various text and numbers.



Slovenia. In particular, we employ the highly effi-
cient Faster region-based convolutional neural net-
work (Faster R-CNN) model [23], which demon-
strated great accuracy and speed in the field of ob-
ject recognition [23]. Although some previous works
already employed CNN approaches in both stages
of the pipeline to some extent [41], they have fo-
cused on a highly limited subset of traffic sign cat-
egories. On the other hand, approaches that con-
sidered a large set of categories [6] adhered to the
traditional hand-crafted features and focused only on
ideogram-based (non-text) traffic signs. In contrast,
our convolutional approach is applied to a broad set
of categories, where individual traffic sign instances
are not only subject to changes in lighting condi-
tions, scale, viewing angle, blur, and occlusions, but
also to intra-category appearance variations. That is,
several challenging traffic sign categories are consid-
ered, whose instances may be of different real-world
sizes, aspect ratio, color, or may contain various text
that significantly differs between individual instances
(Figure 2).

Figure 2. Examples of challenging traffic sign categories
in our dataset, demonstrating by-design within-category
appearance variability of individual instances. First two
rows: instances with relatively low appearance variability
from categories of the base set. Last two rows: instances
with high appearance variability from categories of the ex-
tended set.

The remainder of the paper is organized as fol-
lows. Section 2 provides an overview of the related
work, the employed method for TSD and TSR is
presented in Section 3, experimental results are dis-
cussed in Section 4, while Section 5 concludes the
paper.

2. Related work

An enormous amount of literature exists on the
topics of TSD and TSR, and several review papers
are available [20, 8, 34]. In general, it is very difficult

to decide which approach gives better overall results,
mainly due to the lack of a standard publicly avail-
able benchmark dataset that would contain an exten-
sive set of various traffic sign categories, as empha-
sized in several recent studies [34, 5]. Some authors
evaluate their approaches on one of the many pub-
lic datasets with a relatively limited number of traffic
sign categories:

• The German Traffic Sign Detection Benchmark
(GTSDB) [11] comprises 3 super-categories of
traffic signs and is primarily intended for TSD.

• The German Traffic Sign Recognition Bench-
mark (GTSRB) [29] covers 43 categories and is
intended for TSR.

• The Belgium Traffic Signs (BTS) dataset [32] is
suitable for TSD as well as TSR and contains 62
different categories of traffic signs.

• The Mapping and Assessing the State of Traf-
fic Infrastructure (MASTIF) datasets were ac-
quired in the scope of a commercial road main-
tenance assessment service in Croatia [25]. The
proposed set of 9 categories of traffic signs [33]
was later extended to 31 categories [12].

• The Swedish Traffic Sign dataset [15] is suitable
for experimentation with 10 categories.

• The Laboratory for Intelligent and Safe Auto-
mobiles (LISA) Dataset [20] contains 49 cate-
gories of traffic signs and was acquired on the
roads in the United States.

To enrich the set of considered traffic signs, some
approaches sample images from multiple datasets to
perform the evaluation [16, 37]. On the other hand, a
vast number of authors use their own private datasets
[17, 24, 6, 21]. To the best of our knowledge, the
largest set of categories was considered in the pri-
vate dataset of [6], who distinguished between 131
categories of non-text traffic signs from the roads of
United Kingdom.

Various methods have been applied for TSD and
TSR. Traditionally hand-crafted features have been
used, like histogram of oriented gradients (HOG)
[35, 39, 6, 18, 5, 9, 12, 11], scale invariant feature
transform (SIFT) [9], local binary patterns (LBP)
[5], GIST [22], or integral channel features [18],
whereas a wide range of machine learning methods
have been employed, ranging from support vector



machine (SVM) [6, 5, 38], logistic regression [22],
and random forests [5, 38], to artificial neural net-
works in the form of an extreme learning machine
(ELM) [12].

Recently, like the entire computer vision field,
TSD and TSR have also been subject to CNN re-
naissance. A modern CNN approach that automat-
ically extracts multi-scale features for TSD has been
applied in [36]. In TSR, CNNs have been used to au-
tomatically learn feature representations and to per-
form the classification [3, 26, 14, 33]. In order to
further improve the recognition accuracy, a combi-
nation of CNN and a Multilayer Perceptron was ap-
plied in [2], while an ensemble classifier consisting
of several CNNs is proposed in [3, 14]. A method
that uses CNN to learn features and then applies
ELM as a classifier has been applied in [40], while
[10] employed a deep network consisting of spatial
transformer layers and a modified version of incep-
tion module. It has been shown in [28] that the per-
formance of CNN on TSR outperforms the human
performance on GTSRB. Both stages of the recog-
nition pipeline were addressed using CNNs in [41].
They applied a fully convolutional network to obtain
a heat map of the image, on which a region proposal
algorithm was employed for TSD. Finally, a differ-
ent CNN was then employed to classify the obtained
regions.

3. Method

In this section we first present the data augmenta-
tion techniques that were applied to enrich the train-
ing set of images, then, a method employed for
model learning and test-stage detection and recogni-
tion, Faster R-CNN [23], is briefly described.

3.1. Data augmentation

Since CNNs require a huge amount of images for
learning, data augmentation is often performed to ob-
tain additional learning samples [6, 41]. In this work
we have created synthetic traffic sign instances by
following one of the two considered approaches:

• Creation by distortion of graphical template im-
ages; a graphical template for every class was
available and it was used to artificially generate
various traffic sign appearances.

• Creation by modification of segmented real-
world training samples; the traffic signs in our
database (see Sec. 4.1) are annotated with tight

bounding boxes, allowing to segment them from
the training images.

In both cases, two classes of distortions were per-
formed: (i) geometric/shape distortions (affine trans-
formations along horizontal and vertical dimension,
changes in scale), and (ii) appearance distortions
(variations in brightness and contrast, motion blur,
and variable lighting simulating partial shadowing).
A number of generated traffic signs for both ap-
proaches are depicted in Figure 3.

In the approach using graphical template, about
200 samples were created from a single template
for each category. Similarly, also in the second ap-
proach a similar number of synthetic instances were
acquired by randomly sampling from a set of dis-
torted training instances. Generated traffic sign sam-
ples were inserted into street-environment-like back-
ground images, acquired from the subset of the BTS
dataset [32], which originally contained no other traf-
fic signs. From at least one to at most five traffic signs
were placed in non-overlapping manner on random
locations onto each background image, avoiding the
bottom central part where only the road is usually
seen, which resulted in about 6000 new training im-
ages.

Figure 3. Examples of synthetic traffic sign instances.
Top half: generated by performing distortions on a single
graphical template (the first instance). Bottom half: gen-
erated by performing distortions on real-world samples.

3.2. Faster R-CNN

The Faster R-CNN network [23] is composed of
two modules. The first module is a deep fully convo-
lutional network, a so-called Region Proposal Net-
work (RPN), that takes an input image and produces
a set of rectangular object proposals, each with an ob-



jectness score. The second module is a region-based
CNN, called Fast R-CNN, that classifies the pro-
posed regions into the set of predefined categories.
Fast R-CNN is highly efficient since it shares convo-
lutions across individual proposals. It also performs
bounding box regression to further refine the qual-
ity of the proposed regions. The entire system is a
single unified network, in which RPN and Fast R-
CNN are merged by sharing their convolutional fea-
tures. Following the recently popular terminology of
neural networks with attention mechanisms, the RPN
module tells the Fast R-CNN module where to look
(Figure 4).

Training a Faster R-CNN network is a 4-step opti-
mization process that alternates between fine-tuning
for the region proposal task and fine-tuning for the
classification task, both being performed by back-
propagation with stochastic gradient descent. In the
first step, the RPN is initialized with an ImageNet-
pre-trained model and then fine-tuned end-to-end. In
the second step, a separate Fast R-CNN network, also
initialized with the ImageNet-pre-trained model, is
trained using the proposals generated by the step-1
RPN. At this point the two networks do not share
convolutional layers. In the third step, the classifica-
tion network is used to initialize RPN training, and
then, keeping the convolutional layers fixed, only the
layers unique to RPN are fine-tuned. Now the two
networks share convolutional layers. Finally, keep-
ing the convolutional layers fixed, the unique layers
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Figure 4. Faster R-CNN is a single, unified network for
object detection and classification [23].

of Fast R-CNN are fine-tuned.
Faster R-CNN enables rapid detection and recog-

nition in the test-phase. For each input image the
trained model outputs a set of object bounding boxes,
where each box is associated with a category label
and a softmax score in the interval [0, 1].

4. Experimental results

We first present our dataset with corresponding
base and extended set of categories in Section 4.1,
whereas implementation details are introduced in
Section 4.2. Results of the experiments with the
base set are reported in the context of the detec-
tion stage performance in Section 4.3, followed by
the full pipeline evaluation in Section 4.4, whereas
the analysis of efficiency in the practical application
of semiautomatic road image database maintenance
system is discussed in Section 4.5. Finally, results of
the experiment on the extended set are presented in
Section 4.6, and a discussion on failure cases is given
in Section 4.7.

4.1. The dataset

Our dataset was acquired by the DFG Consult-
ing d.o.o. company for the purpose of maintaining
records of traffic signalization. The RGB images
were acquired with a camera mounted on a vehicle
that was driven through six different Slovenian mu-
nicipalities. The image data was acquired in rural as
well as urban areas. Only the images containing at
least one traffic sign were selected from the vast cor-
pus of collected data. Moreover, the selection was
performed in such a way that there is usually a sig-
nificant scene change between any pair of selected
consecutive frames.

There is a total of 4989 images in the dataset,
with 10801 tightly annotated traffic sign instances
corresponding to 270 categories. The total num-
ber of instances is different for each category. In
this work we have focused only on a subset of cat-
egories for which a sufficient number of samples are
available. We chose 20 samples to be the minimum
amount, which yielded 9943 annotations correspond-
ing to 123 categories (Figure 1). Among these cate-
gories, 91 of them correspond to traffic signs with a
relatively uniquely defined appearance. These are the
categories of the base set. Although some by-design
appearance variability is also present in the base set,
significantly larger variability is present in the re-
maining 32 categories. These signs can be of vari-



able sizes or color and can contain various text and
numbers (Figure 2). These challenging categories to-
gether with the base set form the extended set.

To obtain a valid train-test split with sufficient
number of samples for each category in both sets we
have considered the following approach. For each
image we have its associated world coordinates that
were acquired using a GPS device. Images were first
clustered into groups such that each pair of images
that were acquired less than 50 meters apart were as-
signed into the same cluster. A cluster of images was
then randomly assigned to either a train or test set,
which ensured that any similar images were in the
same set. Moreover, a restriction was set that about
25% of traffic sign instances for each category have
to appear in the test set. In this way 2752 images
were selected for training and 928 for testing when
the base set of categories was considered. When the
extended set of categories was used the procedure se-
lected 3305 training and 1272 testing images.

4.2. Implementation details

For the Faster R-CNN we use the publicly avail-
able Matlab implementation [23] that is based on
Caffe framework [13]. The VGG-16 network model
[27], which has 13 convolutional layers and 3 fully-
connected layers, was employed as a network model,
due to its great performance in the field of object
recognition [23, 27]. We use the default parameters
provided with the Faster R-CNN implementation. In
particular, input images are re-scaled such that their
shorter side equals 600 pixels, the Intersection-over-
Union (IoU) threshold for non-maximum suppres-
sion (NMS) in the detection phase equals 0.7, the
top-300 ranked proposals are then selected to pro-
ceed into the classification stage, where the regressed
boxes are again filtered using NMS with IoU thresh-
old of 0.35. For RPN a learning rate of 0.001 is used
for the first 60k iterations, and 0.0001 for the next
20k iterations. A momentum of 0.9 and a weight de-
cay of 0.0005 is applied. The same hyper-parameter
values are used with Fast R-CNN, where the only dif-
ferences are that the learning rate drop is performed
at 30k iterations, and the optimization stops at 40k
iterations.

4.3. Evaluation of the detection stage

We evaluated the detection stage using the base
set of categories. An example input image is shown
in Figure 5. It depicts five traffic signs that were
successfully detected and recognized (denoted with

green bounding boxes). Note that the green right ar-
row traffic sign corresponds to the extended set of
categories, and is therefore correctly not detected in
this image. The yellow bounding boxes denote the
first (best) 30 region proposals (out of 300).

Figure 5. Example of traffic sign detection.

We can see that even 10% of all region proposals
generated with the implemented method cover pretty
well all the present traffic signs. Such a performance
is quite typical and can be observed in other test im-
ages as well.

To quantitatively asses the performance of the re-
gion proposal generator we measured the success of
different numbers of region proposals. In this step
of the detection pipeline we are interested in the re-
call; the proportion of the ground truth bounding
boxes that are covered with the proposed regions.
We counted a ground truth box to be detected if
the IoU between the two boxes exceeded a prede-
termined threshold. We therefore measured recall
of detected boxes with respect to different numbers
of region proposals and different values of IoU. The
results are plotted in Figure 6. We can see that the
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Figure 6. Recall in the detection stage for different IoU
values and number of considered region proposals.



top ranked region proposals are very successful, as
a small number of region proposals, for example 30,
suffices to achieve a quite high recall, while after 100
region proposals, the performance practically does
not improve any further. One can also observe that
the recall stays relatively high until IoU of 40–60%
and then drops quite rapidly. However, as it turns
out, such overlaps are already sufficient for reliable
recognition of traffic signs.

4.4. Full pipeline evaluation

To evaluate the entire detection and recognition
pipeline we measured the mean average precision
(mAP) over all 91 classes in the base set. In the
first experiment we trained our model without data
augmentation, i.e., using only available 2752 train-
ing images (Section 4.1). Second, we augmented the
training set using images with synthetically gener-
ated templates (6388 images). Finally, in the third
experiment, the original training set was augmented
with 5209 images generated by altering the real im-
age regions that contain traffic signs (Section 3.1).
The results are presented in Table 1. The results
show that augmenting the training images with the
generated ones proved to be useful; we were able to
achieve 90% mAP.

Table 1. mAP for different training sets.

Training set mAP

Training images 85.59
Train. images + varied syn. templates 88.15
Train. images + varied train. samples 90.00

The performance of the method varies for differ-
ent classes. Average precisions for individual classes
are depicted as blue bars in Figure 7, while the blue
bars in Figure 8 depict the histogram of all individual
average precisions. The detector achieves the opti-
mal performance for more than a third of all classes,
and above 90% mAP for two thirds of classes; how-
ever, there are still a few difficult classes where the
average precision remains relatively low.

4.5. Semi-supervised verification

One possible practical application of our method
is semiautomatic road image database maintenance
system with a human verifier in the loop. The op-
erators’ task would be to manually verify the classi-
fications with low confidence values, i.e., instances
with low softmax score (Section 3.2), which would
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Figure 7. Precisions of all classes before (blue) and after
(red) verification, proportion of verified detections (cyan)
at the verification threshold of 0.95.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

average precision

 

 

before verification
after verification

Figure 8. Histograms of class APs before and after verifi-
cation.

enable the overall reduction of false positives (but not
of false negatives).

We analyzed the performance of such a semi-
supervised approach by eliminating the detected
false positives with a confidence lower than the pre-
defined threshold (these false positives would be
spotted by the human verifier). The red bars in Fig-
ure 7 show the improvement over the original results.
In fact, the overall mAP increases to 93.25% if the
threshold for verification is set to 0.95, which re-
quires verification of 8.31% of all detections. The
proportion of detections that had to be verified is de-
picted for the individual classes with the cyan bars in
Figure 7. The improvement is also observable in the
histogram of all individual class average precisions,
depicted in Figure 8, where red bars denote the re-
sults after verification.
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Figure 9. mAP (left, blue) and proportion of verified de-
tections (right, green) for different verification thresholds.

We also varied the verification threshold and ob-
served the improvement of the detector performance,
as well as measured the additional effort that would
have to be made by the operator. Figure 9 depicts
the mAP, i.e., the mean of all individual proportions
of the positive detections (the blue curve, left scale)
as well as the mean of all proportions of the verified
detections (thus the number of verifications over the
number of detections, averaged over all classes). One
can observe that a significant increase of mAP can be
achieved by requiring a relatively small proportion
(below 10%) of detections to be verified. Having a
human in the loop, we can therefore semiautomati-
cally eliminate a large number of false positives, as
in general they tend to have a lower detection score
than the true positives.

4.6. Experiment with the extended set

Lastly, we also evaluated the performance of the
approach on all 123 classes. The results are presented
in Table 2 for all 123 classes together, as well as for
the subset of 91 classes considered in the first experi-
ment, and for the additional subset of 32 classes. One
can observe that the performance dropped signifi-
cantly; predominantly due to very low average pre-
cisions achieved on the additional classes. Figure 10
depicts the histogram of the class average precisions.
The precisions of the base subset of 91 classes are
depicted in blue, while the precisions of the addi-
tional classes are depicted in red. It is evident that
the performance on the extended set is low. The rea-
son for this is the highly challenging nature of the
corresponding traffic sign classes (see Figure 2) and
an insufficient number of available training instances
to cover the very large intra-class appearance vari-
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Figure 10. Histogram of APs for 123 classes.

ability.

4.7. Discussion

The detector performs relatively well on the base
91 classes; the vast majority of detections are suc-
cessful. There are, however, still a number of fail-
ures. Figure 11 illustrates a couple of failure cases.
The first two rows show four examples (pairs of the
detected image region on the left, and the recognized
traffic sign on the right), where the detector detected
the traffic signs that were not included in the training
set, and recognized them as the most similar ones
among the trained traffic signs. Although we con-
sider these detections as false positives, these fail-
ures seem to be quite understandable. In the third
row three more false positives are shown. In gen-
eral, most of the failures are false negatives. The
last two rows depict some of them. Some of traf-
fic signs that were not detected are badly illumi-
nated, damaged, occluded, or unusually oriented (the
fourth row). There is, however, a number of traffic
signs with a clear, undistorted appearance that were
also not detected. Some of them are depicted in the
fifth row of Figure 11. We observed that 82% of
all missed objects, i.e., false negatives, were smaller
than 50 pixels after input image down-scaling. This

Table 2. mAP for subsets of classes in 123 classes experi-
ment.

Classes mAP

All 123 classes 79.41
First subset (91 classes) 88.13
Second subset (32 classes) 54.62



Figure 11. A couple of failure cases. See text for detailed
explanation.

indicates that detector is not robust enough to detect
smaller traffic sign objects and future improvements
should be made to address this issue.

5. Conclusion

In this paper we applied a convolutional neural
network (CNN) approach to the problem of traffic
sign recognition in both stages of the pipeline, i.e.,
the detection and classification stage. The Faster
R-CNN model was applied for this purpose. Ex-
periments were performed on our novel challeng-
ing dataset with a vast number of categories. Sev-
eral of these categories have not yet been consid-
ered in previous works, perhaps due to their highly
challenging nature, i.e., the appearance of the corre-
sponding individual traffic sign instances can be dif-
ferent from instance to instance. Experimental re-
sults demonstrate that the considered approach de-
livers good performance in both detection and recog-
nition stage, and that learning with data augmenta-
tion in a form of distorted graphical templates fur-
ther improves the recognition performance. A further
boost in recognition is obtained when synthetic sam-
ples are generated from real world instances. More-
over, we demonstrate that in the practical applica-
tion of a database maintenance system, a relatively
small number of interventions from a human opera-
tor could significantly improve the performance.

In future work, we will compare the performance
of the Faster R-CNN approach with other state-of-
the art methods in the context of traffic sign detection
and recognition. We will also address the issue of de-
tecting smaller objects which proved to be a majority

of missed objects. We will address this issue by in-
creasing image resolution, if permitted by hardware
limitation, or by employing a multi-scale approach.
We will also acquire additional learning samples that
cover a larger spectrum of all possible intra-instance
variations to improve the results in the experiments
of the extended set. Furthermore, our dataset will be
extended to contain a sufficient number of traffic sign
instances for each of the remaining 147 (out of 270
total) categories. Finally, we are going to do our best
to arrange the public availability of the dataset used
in this work, i.e., making it the traffic sign detection
and recognition benchmark.
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